1	(a	(i)	all atoms held in position / in tetrahedral structure / to four other carbon	[1]
			atoms / <u>all</u> strong bonds	[1]
		(ii)	jewellery / drilling / cutting / engraving / cutting edges in scalpels mark first use offered	[1]
		(iii)	layer structure / sheets molecules / ions in layers = [0]	[1]
			layers can slide (over each other)	[1]
		(iv)	lubricant / pencils / electrodes mark first use offered	[1]
	(b)		4e between carbon and oxygens 2 non-bonding pairs on both oxygens cond correct coding – only scored if marks 1 and 2 awarded ignore O_2 in atom	[1] [1] [1]
		(ii)	4O around each Si 2Si around each O must refer to diagram not valencies or electron distributions	[1] [1]
		(iii)	SiO ₂ has higher mp or bp SiO ₂ is a solid, CO ₂ is a gas (at rtp) (when both are solids) then SiO ₂ is harder has higher density SiO ₂ insoluble, CO ₂ soluble any two , comparison needed	[2]
2	(a	she	complete the outer shell (of oxygen) / full outer or valence shell / 8 (electrons) ir ell / Noble gas structure / to complete outer shell / to complete the octet ore reference to hydrogen atoms / reference to accepting / sharing or gaining electr	
	(b)		es (one) electron t loses electron s	[1]
	(c)	орр	posite charges attract / electrostatic attraction / positive attracts negative / + and $-$	<u>attract</u> [1]
	(d)		colid ions cannot move / flow / no free ions / ions in a lattice colution ions can move / flow / mobile ions / ions free (to move)	[1] [1] otal: 5]

3	(a	(i)	D	[1]
		(ii)	E	[1]
	((iii)	B or F	[1]
	((iv)	В	[1]
		(v)	A	[1]
	(b)		CF ₂ or CaI ₂	[1]
			COND next two marks conditional on correct formula C^{2+} and F or Ca^{2+} and I 7× and 1o round F/I NOTE covalent = 0 Ignore electrons around Ca accept arrow notation arrow from electron on calcium atom to iodine	[1] [1]
		(ii)	high melting point or boiling point conducts when molten or in solution soluble in water brittle correct chemical properties hard	
			Any TWO NOT crystalline solid NOT does not conduct as a solid	[2]
				[Total: 10]

4	(a	corr	a : 1N correct ratio ect charges around N	[1] [1] [1]
		if co igno if th	o symbols then must have correct key ovalent only mark 1 ore electrons around sodium e response includes both a correct and an incorrect answer not select correct one, mark = [0]	
	(b)			[1]
			NOT atoms or cores or nuclei layers or lattice or regular pattern	[1]
			delocalised or free or mobile electrons or sea	[1]
			OR <u>positive</u> ions or cations	[1]
			NOT atoms or cores or nuclei attraction between ions and electrons	[1]
			delocalised or free or mobile electrons or sea	[1]
			the attraction/electrostatic bonding must be between ions and delocalised electrons, between cations and anions does not score	
			ACCEPT bond if qualified - electrostatic bond, etc.	
			if molecular or molecules then cannot score cation mark	
		(ii)	delocalised/free/mobile electrons or electrons can move	[1]
			layers or ions or atoms or particles NB more flexible than 2(b)(i)	[1]
			can <u>slip</u> or move past each other or bonding non-directional	[1]
	(0)		tetrahedral	[4]
	(c)		1Si : 4O bonded/surrounded, etc.	[1] [1]
			10 : 2 Si	[1]
			NOT molecules of oxygen, etc.	
			NOT intermolecular forces ONLY tetrahedral can score for either of the above	
			Despite what the question states, ACCEPT a clear accurate diagram which shows the above three points.	he
		(ii)	hard high mp or bp colourless (NOT clear) or shiny or translucent non/poor conductor (of electricity) brittle	
			insoluble	
			any TWO NOT crystalline or strong	[2]

5		example e.g. sodium chloride PT correct formula	[1] [1]
		r silicon(IV) oxide or sand or silicon oxide polymer only TWO elements	[1]
	electro good	ns [1] and <u>positive ions</u> [1]	[2] [1]
			[Total: 6]
6	Aco IF f	rrect ratio MgBr ₂ or Mg 2Br cept anywhere in space formula suggests covalency then [1] only for MgBr ₂	[1]
	cor Do 8e NO	Mg 2Br rect charges Mg ²⁺ and Br not be concerned about location of minus sign around bromine TE do not require correct coding – just 7 and 1 coded differently TE ignore electrons around magnesium	[1] [1]
	(b) (i)	pattern or order or regular or repeat or alternate COND positive and negative <u>ions</u> or atoms or molecules or particles NOTE Accept a sketch that shows the above, that is particles arranged in a way, e.g. any ionic compound such as sodium chloride	[1] [1] a regular
	(ii)	Any reason from the list: charges must balance or based on valencies or group II and group VII or 2e in outer level and 7e in outer level or magnesium loses 2 electrons and brom <u>ine</u> gains 1 electron (per atom)	[1]
	(iii)	reducing or reduction or reductant lost electrons or given or donated electrons or transferred (to bromine) reduced gained or accepted electrons	[1] [1] [1] [Total: 10]

7 More than required number of answers - [0]

		[TOTAL = 6]
(vi)	E	[1]
(v)	Α	[1]
(iv)	C and E	[1]
(iii)	F	[1]
(ii)	D	[1]
(i)	A , B , D	[1]

Question 1

(a)(i)	lattice	[1]
(ii)	high melting point or high fixed points poor conductor as solid good conductor as liquid, accept either aqueous or molten hard soluble in water Any TWO	[2]
(b)(i)	Mg ²⁺	[1]
(ii)	N ³	[1]
(iii)	Mg ₃ N ₂	[1]
(iv)	opposite charges Do NOT accept "attract" it is in the question accept <u>electrostatic attraction</u> as a phrase	[1]

TOTAL = 7